184 research outputs found

    3D PRINTING, OPEN-SOURCE TECHNOLOGY AND THEIR APPLICATIONS IN RESEARCH

    Get PDF
    Open-source software received tremendous success as it drives down the cost of software and expand the distribution. Open-source hardware, as part of the open-source movement, has just risen into public attention for its potential to further drive down the cost of all kinds of manufacturing goods and reshape the manufacture chain. In this report we explores the history, development and the future of open-source hardware project, summarizing the opportunities, challenges and possible solutions. 3D printing is demonstrated as a booster to assist open-source hardware’s development. Low-cost 3D printer enables at-home and in-time fabrication, the download-print-use-improve-distribute cycle is established to encourage more to make and in turn to benefit more. Researchers, teachers and scientists are the first to receive the benefit since they are often lack of budget to purchase much expensive research tools with only limited function. To demonstrate the power of open-source 3D printing in driving down research cost. A library of 3D printable optics components are designed, printed and tested. The study shows significantly reduced research cost – more than 97% equipment investment is saved with some of the optical parts representing only 1% of the cost of its commercial version. Cost reduction stimulates a much broader participants that can further help in modifying, improving the project or even developing new project, this is how open-source hardware innovation chain is established. In the end it is summarized as the technology advances, printers suitable for all kinds of material such as metals, bio-materials, semiconductors are become feasible, the open-source paradigm has the potential to replace the tradition manufacture and activate the new future

    NANOSPHERE LITHOGRAPHY AND ITS APPLICATION IN RAPID AND ECONOMIC FABRICATION OF PLASMONIC HYDROGENATED AMORPHOUS SILICON PHOTOVOLTAIC DEVICES

    Get PDF
    Solar photovoltaic (PV) devices harvest energy from solar radiation and convert it to electricity. PV technologies, as an alternative to traditional fossil fuels, use clean and renewable energy while minimizing pollution. For decades researchers have been developing thin film solar cells as an important alternatives to the relatively expensive bulk crystal solar cell technology. Among those, hydrogenated amorphous silicon (a-Si:H) solar cells prevails for good efficiency, non-toxic and materially abundant nature. However, a-Si:H thickness must be minimized to prevent light induced degradation, so optical enhancement is necessary. Light manipulation has to be applied and carefully engineered to trap light within the active layer(s) of the cell using an inexpensive processing techniques. Plasmonic nanostructure allows manipulation of light to be fine-tuned at nanoscale by enabling plasmonic induced scattering, near-field effect and supported surface plasmon plariton (SPP). However traditional fabrication techniques for fabricating nanoscale plasmonic structure are expensive and cumbersome. In this research studies have been conducted to explore the inexpensive fabrication technologies. As a result, nanosphere lithography (NSL) is chosen as a masking material to create scalable plasmonic nanoparticles at low cost. With computer aided design and numerical simulation, the physics behind plasmonic resonance and cell performance is revealed and the geometry and parameters of plasmonic nanostructure are optimized. Finally, a proof-of-concept study has been made to show the effective enhancement in a-Si:H using plasmonic nanostructures fabricate with NSL. The research indicates the feasibility of using the proposed method for commercializing plasmonic a-Si:H solar cells. This material is based upon work supported by the National Science Foundation under grant award number CBET-1235750

    Synthesis of Enantiomerically-Enriched α-Boryl Organometallic Reagents by Transition-Metal Catalysis:

    Get PDF
    Thesis advisor: James MorkenThis dissertation will present two main projects focusing on the construction of enantiomerically enriched α-boryl organometallic reagents by transition metal catalysis. The first project describes the development of a platinum-catalyzed enantioselective hydrosilylation reaction of alkenyl boronic esters, which provides a general and efficient route to α-borylsilane species. Such species are configurationally stable and exhibit significant synthetic utilities. The second project depicts a nickel-catalyzed enantioselective carbozincation reaction of vinyl boronic esters, which for the first time giving approach to enantioenriched α-borylzinc reagents. These reagents possess good configurational stability at low temperatures and can participate in copper-catalyzed allylation, palladium-catalyzed Negishi cross-coupling and electrophilic halogenation reactions in stereospecific fashion to furnish a broad array of chiral boronic esters. These compounds are important and versatile building blocks in organic synthesis and utilized in the synthesis of (–)-aphanorphine and (–)-enterolactone. Detailed mechanistic studies were carried out, which revealed a nickel(I)-based redox neutral catalytic cycle. The properties of α-borylzinc compounds were also studied by 1H NMR and enabled the development of a stereoconvergent cross-coupling of racemic α-borylzinc reagents. Such catalytic system is also effective for an enantioselective silylzincation of vinyl boronic esters.Thesis (PhD) — Boston College, 2021.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Chemistry

    STUDY ON EARTHQUAKE DESTRUCTION MODE OF THE LARGEST CANAL CROSSING HIGHWAY BRIDGE BASED ON IEM BOUNDARY IN SOUTH-TO-NORTH WATER DIVERSION

    Get PDF
      To study the dynamic failure mechanism and damage development law of highway bridge structure under the boundary effect in the process of seismic dynamic duration, the Wenchang Highway Bridge with the largest canal crossing in the South-to-North Water Diversion is taken as an example for seismic design analysis. Based on the finite element and infinite element coupling theory, the infinite element method boundary is introduced, the concrete damage plasticity is introduced, and the half-space free field model is established to study the energy dispersion phenomenon of waves in the boundary and the absorption effect of the infinite element method boundary on wave energy is verified. Under different peak acceleration intensities, the seismic response analysis of the bridge structure was carried out. The results show that: Under the action of selected artificial waves, the damage location of the bridge mainly concentrated in the junction of the box girder supported by the pier, the bottom of the pier and the junction of the pier and beam. The damage tends to develop downward near the bottom of the box girder. The damage at both ends of the beam extends from both ends to the middle. And the bottom and top of the pier have penetrating damage. These are weak points in seismic design. At a horizontal peak acceleration of 0.6g, in addition to damage to the pier column, damage also occurred to the bottom of the box girder. Therefore, when the horizontal peak acceleration of the seismic wave is greater than 0.6g, the failure of the bottom of the box girder is paid attention to. Moreover, the IEM boundary has a good control effect on the far-field energy dissipation of the wave, which is simpler and more efficient than the viscous–spring boundary

    The Differential Role of Human Cationic Trypsinogen (PRSS1) p.R122H Mutation in Hereditary and Nonhereditary Chronic Pancreatitis: A Systematic Review and Meta-Analysis.

    Get PDF
    Background:Environmental factors and genetic mutations have been increasingly recognized as risk factors for chronic pancreatitis (CP). The PRSS1 p.R122H mutation was the first discovered to affect hereditary CP, with 80% penetrance. We performed here a systematic review and meta-analysis to evaluate the associations of PRSS1 p.R122H mutation with CP of diverse etiology. Methods:The PubMed, EMBASE, and MEDLINE database were reviewed. The pooled odds ratio (OR) with 95% confidence intervals was used to evaluate the association of p.R122H mutation with CP. Initial analysis was conducted with all etiologies of CP, followed by a subgroup analysis for hereditary and nonhereditary CP, including alcoholic or idiopathic CP. Results:A total of eight case-control studies (1733 cases and 2415 controls) were identified and included. Overall, PRSS1 p.R122H mutation was significantly associated with an increased risk of CP (OR = 4.78[1.13-20.20]). Further analysis showed p.R122H mutation strongly associated with the increased risk of hereditary CP (OR = 65.52[9.09-472.48]) but not with nonhereditary CP, both alcoholic and idiopathic CP. Conclusions:Our study showing the differential role of p.R122H mutation in various etiologies of CP indicates that this complex disorder is likely influenced by multiple genetic factors as well as environmental factors

    Association of concomitant continuous pain in trigeminal neuralgia with a narrow foramen ovale

    Get PDF
    BackgroundThe pathogenesis of concomitant continuous pain remains unclear and is worthy of further study. In this clinical study, we aimed to explore the potential role of a narrow foramen ovale in the development of concomitant continuous pain.MethodsA total of 108 patients with classical trigeminal neuralgia affecting the third branch of the trigeminal nerve and 46 healthy individuals were enrolled in this study. Three-dimensional reconstructed computerized tomography images of all participants were collected, and the morphometric features of the foramen ovale were examined by two investigators who were blinded to the clinical data of the patients.ResultsIn this cohort, patients with concomitant continuous pain suffered from more sensory abnormalities (18.4% vs. 2.9%, p = 0.015) and responded more poorly to medication (74.3% vs. 91.9%, p = 0.018) than patients without concomitant continuous pain. While no significant differences regarding the mean length (5.02 mm vs. 5.36 mm, p > 0.05) and area (22.14 mm2 vs. 23.80 mm2, p > 0.05) were observed between patients with and without concomitant continuous pain, the mean width of the foramen ovale on the affected side in patients with concomitant continuous pain was significantly narrower than that in patients without concomitant continuous pain (2.01 mm vs. 2.48 mm, p = 0.003).ConclusionThis neuroimaging and clinical study demonstrated that the development of concomitant continuous pain was caused by the compression of the trigeminal nerve owing to a narrow foramen ovale rather than responsible vessels in classical trigeminal neuralgia

    Dynamical Evolution of Anisotropic Response in Black Phosphorus under Ultrafast Photoexcitation

    Full text link
    Black phosphorus has recently emerged as a promising material for high performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap and anisotropic electronic properties. Dynamical evolution of photo excited carriers and its induced change of transient electronic properties are critical for materials' high field performance, but remains to be explored for black phosphorus. In this work, we perform angle resolved transient reflection spectroscopy to study the dynamical evolution of anisotropic properties of black phosphorus under photo excitation. We find that the anisotropy of reflectivity is enhanced in the pump induced quasi-equilibrium state, suggesting an extraordinary enhancement of the anisotropy in dynamical conductivity in hot carrier dominated regime. These results raise enormous possibilities of creating high field, angle sensitive electronic, optoelectronic and remote sensing devices exploiting the dynamical electronic anisotropic with black phosphorus.Comment: 22 pages,10 figure

    Triple-nerve decompression surgery for the treatment of painful diabetic peripheral neuropathy in lower extremities: A study protocol for a randomized controlled trial

    Get PDF
    ObjectivesPainful diabetic peripheral neuropathy (DPN) is often refractory to conventional medications. Triple-nerve decompression was proposed for painful DPN due to the frequent involvement of multiple nerve entrapments in diabetes. However, the role of decompressive surgery remains controversial. This trial aims to assess the efficacy of triple-nerve decompression for patients with painful DPN suggestive of nerve entrapment using a randomized controlled trial (RCT) design.Methods and analysisThis trial is a single-center RCT and will be conducted in Shanghai Ninth People's Hospital. Enrolled subjects (n = 74) with painful DPN due to nerve compression, which can be detected by nerve conduction studies, will be randomly allocated at a 1:1 ratio into surgical and non-surgical groups. The primary outcome will be measured by 50% responder rates, which is defined as the proportion of subjects with at least 50% reduction of the mean weekly visual analog score (VAS) of pain from baseline after 6 months of treatment. Mean weekly VAS will be additionally evaluated 1 week (W1), 1 month (M1), and 3 months (M3) after treatment to monitor the changes in pain intensity. The secondary outcomes include two-point discrimination (TPD), Toronto clinical scoring system (TCSS), electrophysiological indexes, hospital anxiety and depression scale (HADS), and the medical outcome study short-form 36-item questionnaire (SF-36). A quantitative analgesic questionnaire (QAQ) will be used as a secondary outcome to quantify the analgesic medication weekly. TPD and TCSS will be conducted at W1, M1, M3, and M6 after treatment. Electrophysiological tests, HADS, and SF-36 will be performed at M3 and M6.Ethics and disseminationEthics approval has been obtained from the Ethics Committee of Shanghai Ninth People's Hospital (SH9H-2-21-T323-2). It was registered on the Chinese Clinical Trial Registry website (http://www.chictr.org.cn) on 16 August 2021 with the number ChiCTR2100050049. Written informed consent will be obtained from all participants. The results of this trial will be disseminated via peer-reviewed journals, mass media, and presentations at national and international academic conferences

    Multi-scale pressure analysis and fluidization quality characterization of dry dense medium fluidized bed

    Get PDF
    Coal beneficiation is the source technology of clean processing and utilization of coal. Dry coal beneficiation is an important way for efficient separation and upgrading of easily sliming coal in arid area. Dry dense medium fluidized bed forms a certain density of gas-solid fluidized bed by updraft-driven heavy medium particles fluidization, thus achieving coal separation according to bed density. The uniformity and stability of bed density, namely the bed fluidization quality, is the key to determine the separation accuracy. Due to the disturbance of airflow, bubbles, moving internals, feeding and other factors, the fluidization behavior of the bed is complex and changeable, and the pressure signal shows non-uniformity, non-linearity and multi-scale characteristics. Based on the characteristics of axial differential transmission and lateral equivalent diffusion of pressure signal in dry dense medium fluidized bed, the fluctuation characteristics of axial differential pressure were studied emphatically, and a quantitative characterization method of fluidization quality was proposed. The results show that: Based on time domain analysis, the probability density distribution of total pressure drop in Geldart A type separation fluidized bed is close to normal distribution. When the bed is in the particulate expansion, due to the uneven distribution of contact force between particles, the probability density shows the right deviation and the peak, deviating from the normal distribution. Through frequency domain analysis, it is found that the dominant frequency of bubbles dominates the whole axial interval of fluidized bed at the later stage of bed expansion. After complete fluidization, the dominant frequency of bubbles only controls the central region of the bed. The dominant frequency of bed concentration signal changes obviously along the bed axial distribution. Combined with the results of time-domain and frequency-domain signal analysis, a fluidization quality characterization model was proposed, where the standard deviation of axial fluctuation is weighted and averaged, and the dominant frequency of sub-bed concentration is taken as the weight value. This model can comprehensively evaluate the uniformity and stability of density distribution of dry dense medium fluidized bed, and provide strong support for the steady-state control and accurate separation of dry dense medium fluidized bed

    Cloning and characterization of two subunits of calcineurin cDNA in naked carp (Gymnocypris przewalskii) from Lake Qinghai, China

    Get PDF
    The naked carp (Gymnocypris przewalskii), a native teleost, plays an important role in maintenance of the ecological balance in the system of Lake Qinghai (altitude, 3.2 km) on the Qinghai-Tibet Plateau in China. Calcineurin (CN) is the only member of the serine/threonine phosphatase family that can be activated by both Ca2+ and calmodulin (CaM) and involved in many important physiological processes such as salt tolerance/adaption. In this report, cDNAs of CN catalytic subunit paralogue isoforms: GpCAα (GenBank accession no.JQ407043), GpCAγ (GenBank accession no. JQ407043), and CN regulatory subunit (GpCB) (GenBank accession no. JQ410473), were isolated from Gymnocypris przewalskii and their expression patterns in embryos developmentwere characterized. Gene expression profile demonstrated that GpCA and GpCB mRNA was distributed ubiquitously in all embryonic stages and showed decline until final stage of development. Immunohistologicalanalysis revealed CN localization in different tissues including kidney, heart, brain, spermary, and gill. Collectively, these results provide molecular basis and clues to further understand the role of CN during embryos development and its function in tissues for the adaptation mechanism of naked carp
    • …
    corecore